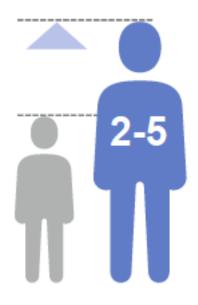

ACC Emerging Strategies for Heart Failure Roundtable

Prevention of AHA Stage C Heart Failure Diabetes and heart failure: Do we have an answer?

Javed Butler, MD, MPH, MBA
Professor of Medicine
Professor of Physiology and Biophysics
Director, Division of Cardiovascular Medicine
Co-Director, Heart Institute
Stony Brook University

Increasing US Prevalence of Diabetes


Based on data from the National Health Interview Survey. CDC Diabetes Public Health Resource Web Site.

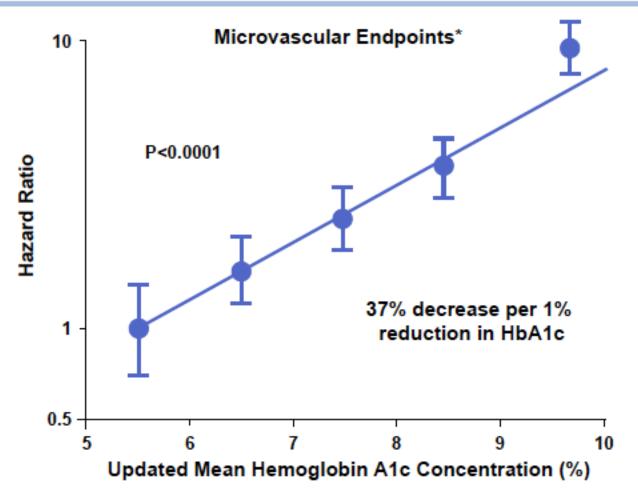
People with diabetes have a 70% higher risk of cardiovascular mortality¹

Cardiovascular Death: Number 1 Cause of Death in Diabetes

Type 2 Diabetes and Heart Failure

2 to 5 times higher risk of developing heart failure¹

In diabetes + heart failure 60–80% greater probability of cardiovascular death and all-cause mortality^{2,3}


^{*}Synthesised based on data from two clinical studies

Kannel WB et al. Am J Cardiol 1974;34:29

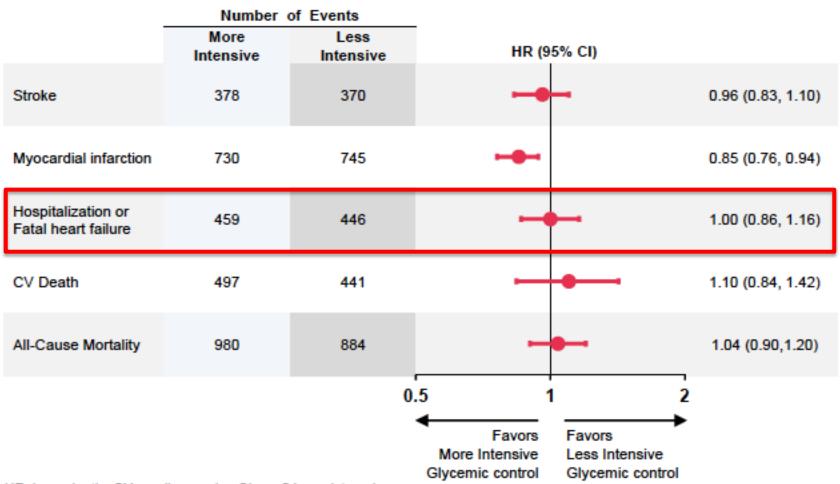
Cubbon RM et al. Diab Vasc Dis Res 2013;10:330

^{3.} MacDonald MR et al. Eur Heart J 2008;29:1377

HbA1c Lowering: Reduced Microvascular Complications in UKPDS

^{*}Retinopathy requiring photocoagulation, vitreous hemorrhage, and fatal or non-fatal renal failure HbA1c, hemoglobin A1c

Stratton, Irene M et al. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. British Medical Journal. 2000; 321:409


Summary of Glycemic Control Trials

Intensive vs. Less-Intensive Glycemic Control¹

	Cardiovascular Events	Mortality
ACCORD	\leftrightarrow	↑
ADVANCE	\leftrightarrow	\leftrightarrow
UKPDS	\leftrightarrow	\leftrightarrow
VADT	\leftrightarrow	\leftrightarrow

Effects of glycemic control on cardiovascular events and mortality remain unclear

Impact of Glycemic Control

HR, hazard ratio; CV, cardiovascular, CI, confidence interval Tumbull FM et al. Diabetologia 2009;52:2288–2298

8. Cardiovascular Disease and Risk Management

Diabetes Care 2015;38(Suppl. 1):S49-S57 | DOI: 10.2337/dc15-S011

Table 8.1—Recommendations for sta	atin treatment in people with dia	betes

Recommended					
Age	Risk factors	statin dose*	Monitoring with lipid panel		
<40 years	None CVD risk factor(s)** Overt CVD***	None Moderate or high High	Annually or as needed to monitor for adherence		
40-75 years	None CVD risk factors Overt CVD	Moderate High High	As needed to monitor adherence		
>75 years	None CVD risk factors Overt CVD	Moderate Moderate or high High	As needed to monitor adherence		

^{*}In addition to lifestyle therapy.

HYPERTENSION/BLOOD PRESSURE CONTROL

Recommendations

Screening and Diagnosis

 Blood pressure should be measured at every routine visit. Patients found to have elevated blood pressure should have blood pressure confirmed on a separate day. B

Goals

- People with diabetes and hypertension should be treated to a systolic blood pressure (SBP) goal of <140 mmHg. A
- Lower systolic targets, such as <130 mmHg, may be appropriate for certain individuals, such as younger patients, if they can be achieved without undue treatment burden. C
- Individuals with diabetes should be treated to a diastolic blood pressure (DBP)
 90 mmHg. A
- Lower diastolic targets, such as <80 mmHg, may be appropriate for certain individuals, such as younger patients, if they can be achieved without undue treatment burden. B

Treatment

- Patients with blood pressure >120/80 mmHg should be advised on lifestyle changes to reduce blood pressure. B
- Patients with confirmed office-based blood pressure higher than 140/90 mmHg should, in addition to lifestyle therapy, have prompt initiation and timely subsequent titration of pharmacological therapy to achieve blood pressure goals. A
- Lifestyle therapy for elevated blood pressure consists of weight loss, if overweight or obese; a Dietary Approaches to Stop Hypertension (DASH)-style dietary pattern including reducing sodium and increasing potassium intake; moderation of alcohol intake; and increased physical activity. B
- Pharmacological therapy for patients with diabetes and hypertension should comprise a regimen that includes either an ACE inhibitor or an angiotensin receptor blocker (ARB). B If one class is not tolerated, the other should be substituted. C
- Multiple-drug therapy (including a thiazide diuretic and ACE inhibitor/ARB, at maximal doses) is generally required to achieve blood pressure targets. B

^{**}CVD risk factors include LDL cholesterol ≥ 100 mg/dL (2.6 mmol/L), high blood pressure, smoking, and overweight and obesity.

^{***}Overt CVD includes those with previous cardiovascular events or acute coronary syndromes.

8. Cardiovascular Disease and Risk Management

Diabetes Care 2015;38(Suppl. 1):S49-S57 | DOI: 10.2337/dc15-S011

American Diabetes Association

CORONARY HEART DISEASE

Recommendations

Screening

 In asymptomatic patients, routine screening for coronary artery disease (CAD) is not recommended because it does not improve outcomes as long as CVD risk factors are treated. A

Treatment

- In patients with known CVD, use aspirin and statin therapy (if not contraindicated) A and consider ACE inhibitor therapy C to reduce the risk of cardiovascular events.
- In patients with a prior MI, β-blockers should be continued for at least 2 years after the event. B
- In patients with symptomatic heart failure, thiazolidinedione treatment should not be used. A
- In patients with stable CHF, metformin may be used if renal function is normal but should be avoided in unstable or hospitalized patients with CHF. B

ANTIPLATELET AGENTS

Recommendations

- Consider aspirin therapy (75–162 mg/day) as a primary prevention strategy in those with type 1 or type 2 diabetes at increased cardiovascular risk (10-year risk > 10%). This includes most men aged >50 years or women aged >60 years who have at least one additional major risk factor (family history of CVD, hypertension, smoking, dyslipidemia, or albuminuria). C
- Aspirin should not be recommended for CVD prevention for adults with diabetes at low CVD risk (10-year CVD risk <5%, such as in men aged <50 years and women aged <60 years with no major additional CVD risk factors), since the potential adverse effects from bleeding likely offset the potential benefits. C
- In patients in these age-groups with multiple other risk factors (e.g., 10-year risk 5–10%), dinical judgment is required. E
- Use aspirin therapy (75–162 mg/day) as a secondary prevention strategy in those with diabetes and a history of CVD. A
- For patients with CVD and documented as pirin allergy, clopidogrel (75 mg/day) should be used. B
- Dual antiplatelet therapy is reasonable for up to a year after an acute coronary syndrome. B

2013 ACCF/AHA Guideline for the Management of Heart Failure

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

7.1. Stage A: Recommendations

COR

Class I

- Hypertension and lipid disorders should be controlled in accordance with contemporary guidelines to lower the risk of HF.^{27,94,311-314} (Level of Evidence: A)
- Other conditions that may lead to or contribute to HF, such as obesity, diabetes mellitus, tobacco use, and known cardiotoxic agents, should be controlled or avoided. (Level of Evidence: C)

L0E

References

Table 12. Recommendations for Treatment of Stage B HF

Recommendations

In patients with a history of MI and reduced EF, ACE inhibitors or ARBs should be used to prevent HF	T	Α	314, 342–345
In patients with MI and reduced EF, evidence-based beta blockers should be used to prevent HF	1	В	346–348
In patients with MI, statins should be used to prevent HF	1	Α	104, 349–354
Blood pressure should be controlled to prevent symptomatic HF	1	Α	27, 94, 311–313
ACE inhibitors should be used in all patients with a reduced EF to prevent HF	1	Α	65, 344
Beta blockers should be used in all patients with a reduced EF to prevent HF	1	С	N/A
An ICD is reasonable in patients with asymptomatic ischemic cardiomyopathy who are at least 40 d post-MI, have an LVEF ≤30%, and on GDMT	lla	В	355
Nondihydropyridine calcium channel blockers may be harmful in patients with low LVEF	III: Harm	С	N/A

ORIGINAL ARTICLE

Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

Steven P. Marso, M.D., Gilbert H. Daniels, M.D., Kirstine Brown-Frandsen, M.D., Peter Kristensen, M.D., E.M.B.A., Johannes F.E. Mann, M.D., Michael A. Nauck, M.D., Steven E. Nissen, M.D., Stuart Pocock, Ph.D., Neil R. Poulter, F.Med.Sci., Lasse S. Ravn, M.D., Ph.D., William M. Steinberg, M.D., Mette Stockner, M.D., Bernard Zinman, M.D., Richard M. Bergenstal, M.D., and John B. Buse, M.D., Ph.D., for the LEADER Steering Committee on behalf of the LEADER Trial Investigators*

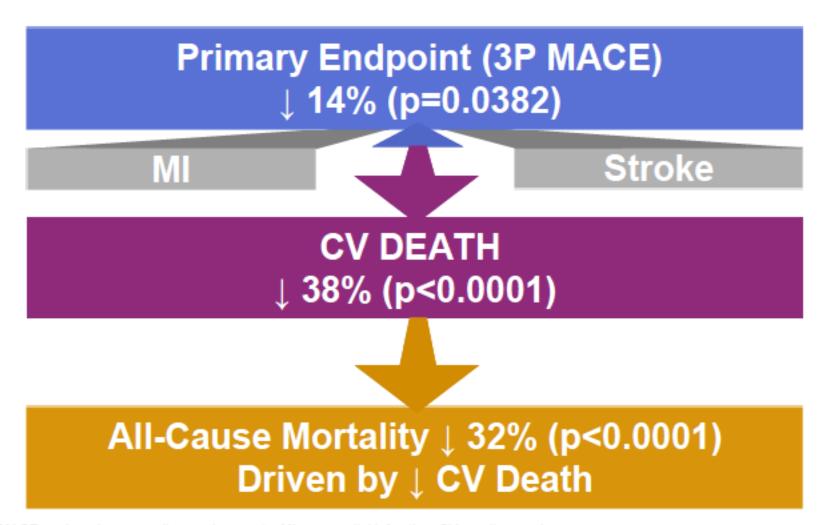
Table 1. Primary and Secondary Outcomes.*

Outcome	Liraglutide (N = 4668)	Incidence Rate	Placebo (N = 4672)	Incidence Rate	Hazard Ratio (95% CI)	P Value
	no. of patients (%)	no. of events/ 100 patient-yr	no. of patients (%)	no. of events/ 100 patient-yr		
Primary composite outcome†	608 (13.0)	3.4	694 (14.9)	3.9	0.87 (0.78-0.97)	0.01
Expanded composite outcome‡	948 (20.3)	5.3	1062 (22.7)	6.0	0.88 (0.81-0.96)	0.005
Death from any cause	381 (8.2)	2.1	447 (9.6)	2.5	0.85 (0.74-0.97)	0.02
Death from cardiovascular causes	219 (4.7)	1.2	278 (6.0)	1.6	0.78 (0.66-0.93)	0.007
Death from noncardiovascular causes	162 (3.5)	0.9	169 (3.6)	1.0	0.95 (0.77-1.18)	0.66
Myocardial infarction§	292 (6.3)	1.6	339 (7.3)	1.9	0.86 (0.73-1.00)	0.046
Fatal§	17 (0.4)	0.1	28 (0.6)	0.2	0.60 (0.33-1.10)	0.10
Nonfatal	281 (6.0)	1.6	317 (6.8)	1.8	0.88 (0.75-1.03)	0.11
Silent ∫	62 (1.3)	0.3	76 (1.6)	0.4	0.86 (0.61-1.20)	0.37
Stroke§	173 (3.7)	1.0	199 (4.3)	1.1	0.86 (0.71-1.06)	0.16
Fatal§	16 (0.3)	0.1	25 (0.5)	0.1	0.64 (0.34-1.19)	0.16
Nonfatal	159 (3.4)	0.9	177 (3.8)	1.0	0.89 (0.72-1.11)	0.30
Transient ischemic attack§	48 (1.0)	0.3	60 (1.3)	0.3	0.79 (0.54-1.16)	0.23
Coronary revascularization	405 (8.7)	2.3	441 (9.4)	2.5	0.91 (0.80-1.04)	0.18
Hospitalization for unstable angina pectoris	122 (2.6)	0.7	124 (2.7)	0.7	0.98 (0.76-1.26)	0.87
Hospitalization for heart failure	218 (4.7)	1.2	248 (5.3)	1.4	0.87 (0.73-1.05)	0.14
Microvascular event	355 (7.6)	2.0	416 (8.9)	2.3	0.84 (0.73-0.97)	0.02
Retinopathy	106 (2.3)	0.6	92 (2.0)	0.5	1.15 (0.87-1.52)	0.33
Nephropathy	268 (5.7)	1.5	337 (7.2)	1.9	0.78 (0.67-0.92)	0.003

ORIGINAL ARTICLE

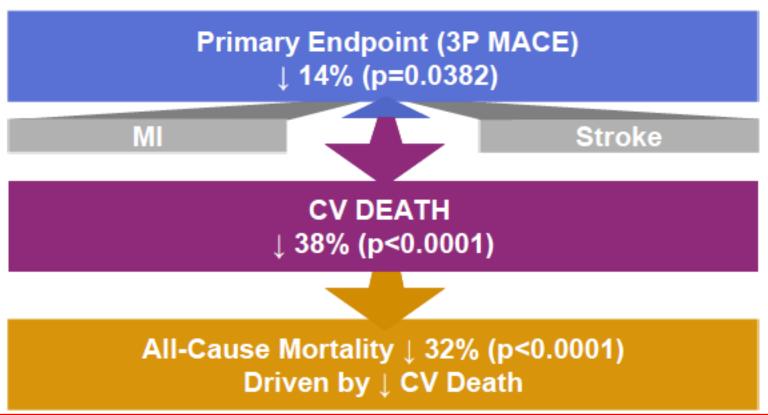
Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

Bernard Zinman, M.D., Christoph Wanner, M.D., John M. Lachin, Sc.D.,
David Fitchett, M.D., Erich Bluhmki, Ph.D., Stefan Hantel, Ph.D.,
Michaela Mattheus, Dipl. Biomath., Theresa Devins, Dr.P.H.,
Odd Erik Johansen, M.D., Ph.D., Hans J. Woerle, M.D., Uli C. Broedl, M.D.,
and Silvio E. Inzucchi, M.D., for the EMPA-REG OUTCOME Investigators


Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial

David Fitchett^{1*}, Bernard Zinman^{2,3}, Christoph Wanner⁴, John M. Lachin⁵, Stefan Hantel⁶, Afshin Salsali⁷, Odd Erik Johansen⁸, Hans J. Woerle⁹, Uli C. Broedl⁹, and Silvio E. Inzucchi¹⁰, on behalf of the EMPA-REG OUTCOME[®] trial investigators

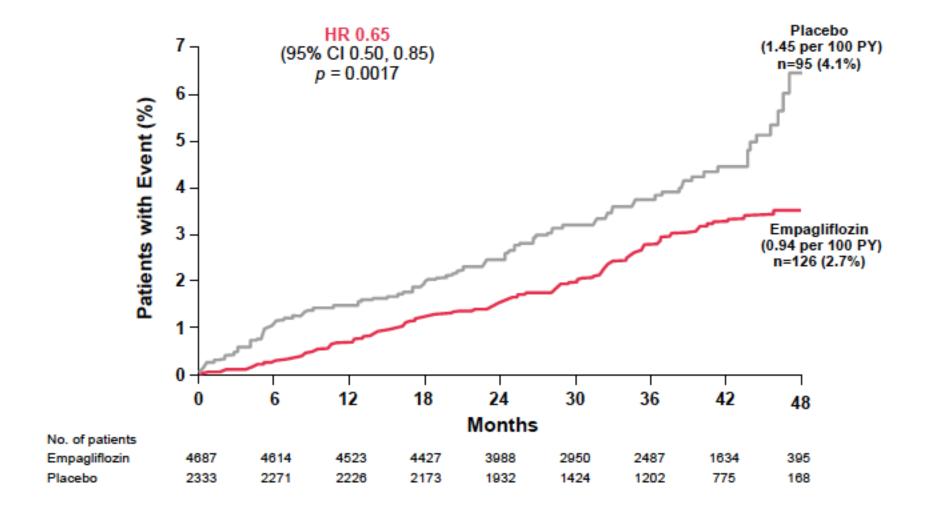
Population with Established Cardiovascular Disease


	Placebo N=2333 %	Empagliflozin 10 mg N=2345 %	Empagliflozin 25 mg N=2342 %
Cardiovascular History			
Coronary artery disease	75.6	76.0	75.3
Myocardial infarction	46.4	47.2	46.2
Coronary artery bypass graft	24.1	25.3	24.8
Stroke	23.7	22.8	23.4
Cardiac failure	10.5	10.2	9.5

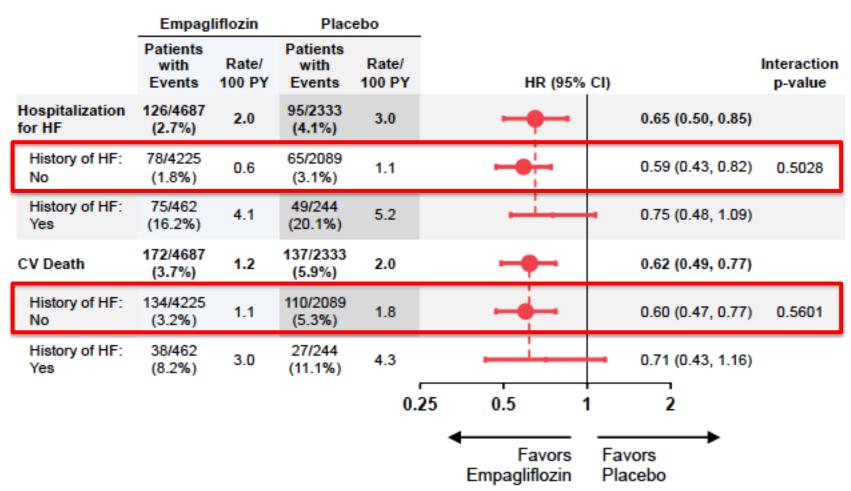
EMPA-REG OUTCOME Trial: Key Results

MACE, major adverse cardiovascular events; MI, myocardial infarction; CV, cardiovascular Zinman et al. N Engl J Med. 2015

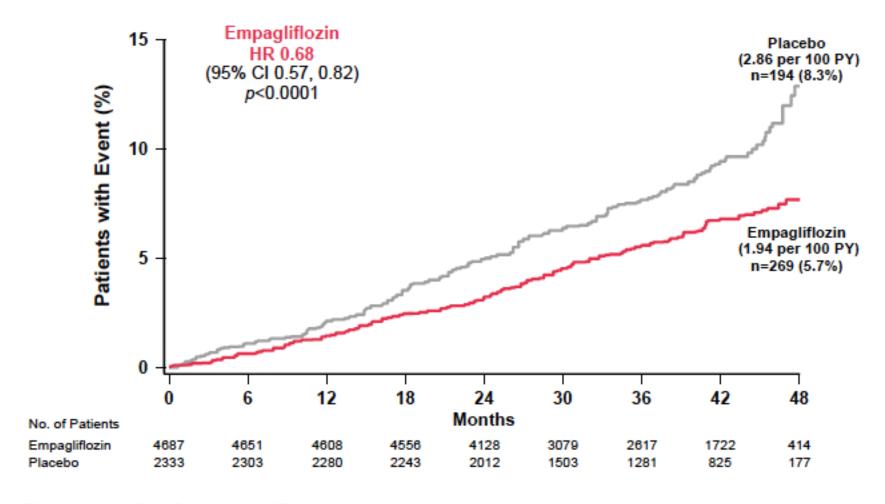
EMPA-REG OUTCOME Trial: Key Results


Heart Failure

- Hospitalization for Heart Failure ↓ 35% (p=0.0017)
- Hospitalization for Heart Failure or CV Death ↓ 34% (p<0.0001)

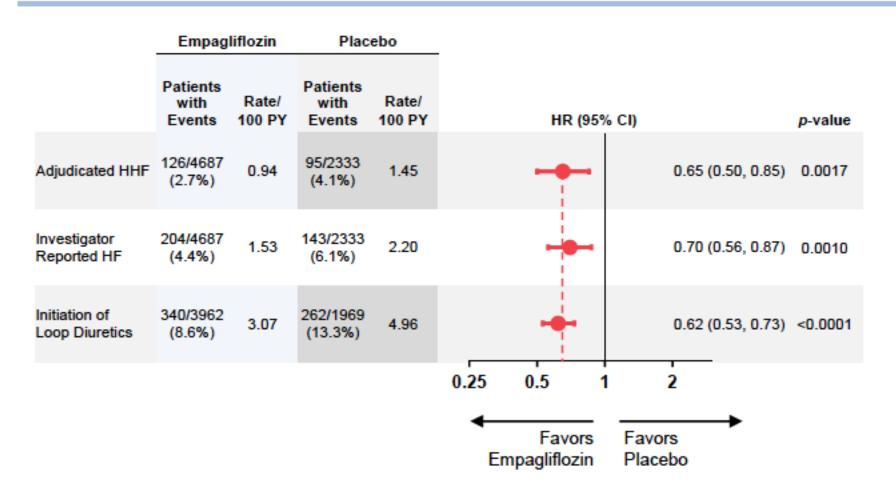

Modes of Cardiovascular Death

Hospitalization for Heart Failure


Hospitalization for HF or CV Death: Subgroups by History of Heart Failure

Cox regression analysis (intent-to-treat population)

HF, heart failure; CV, cardiovascular; PY, patient years; HR, hazard ratio; CI, confidence interval.


All-Cause Mortality

PY, patient years; CI, confidence interval; HR, hazard ratio

HF was a secondary endpoint

Hospitalization for Heart Failure

Cox regression analysis (intent-to-treat population)
HHF, hospitalisation for heart failure; HF, heart failure
PY, patient years; CI, confidence interval; HR, hazard ratio

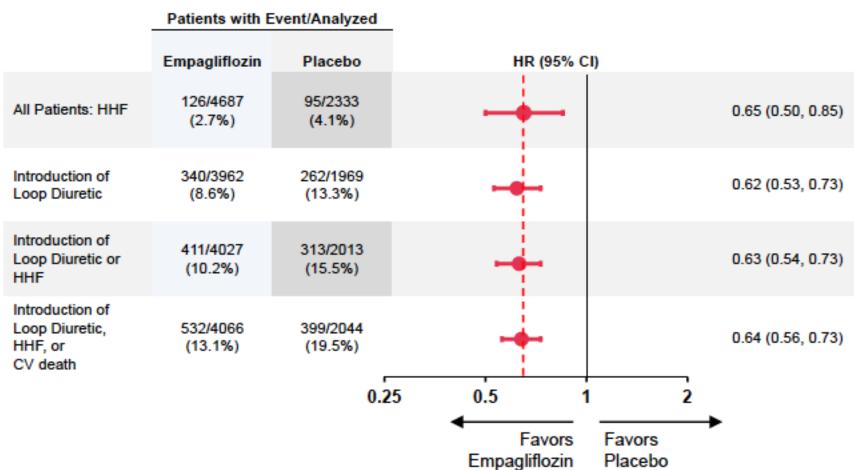
Robustness of Heart Failure Results Across Multiple Outcomes

HHF, hospitalization for HF; CV, cardiovascular; Death Due to HF, clinical event

committee confirmed death due to worsening of HF or cardiogenic shock.

*Based on narrow HF Standard MedRA query (SMQ) of adverse events.

	Empagliflozin	Placebo			
Time to First:	Patients with Events	Patients with Events	HR (95% CI)		p-value
Investigator reported:					
Loop Diuretic	340 (8.6)	262 (13.3)		0.62 (0.53, 0.73)	p<0.000
Edema AE	251 (5.4)	235 (10.1)		0.51 (0.43, 0.61)	p<0.000
HF* AE	204 (4.4)	143 (6.1)	-	0.70 (0.56, 0.87)	p=0.001
HF† Serious AE	192 (4.1)	136 (5.8)	-	0.69 (0.55, 0.86)	p=0.00
HHF	151 (3.2)	98 (4.2)	-i	0.76 (0.59, 0.98)	p=0.035
Central Adjudication Committee confirmed:					
HHF	126 (2.7)	95 (4.1)	-	0.65 (0.50, 0.85)	p=0.002
Death Due to HF	14 (0.3)	22 (0.9)		0.32 (0.16, 0.62)	p=0.000
CV Death	172 (3.7)	137 (5.9)		0.62 (0.49, 0.77)	p<0.000
HHF or CV Death	265 (5.7)	198 (8.5)	-	0.66 (0.55, 0.79)	p<0.000
regression analysis, ITT pop hazard ratio; CI, confidence		event: HF, heart failu	0.125 0.25 0.5 1	2	


Favors

Placebo

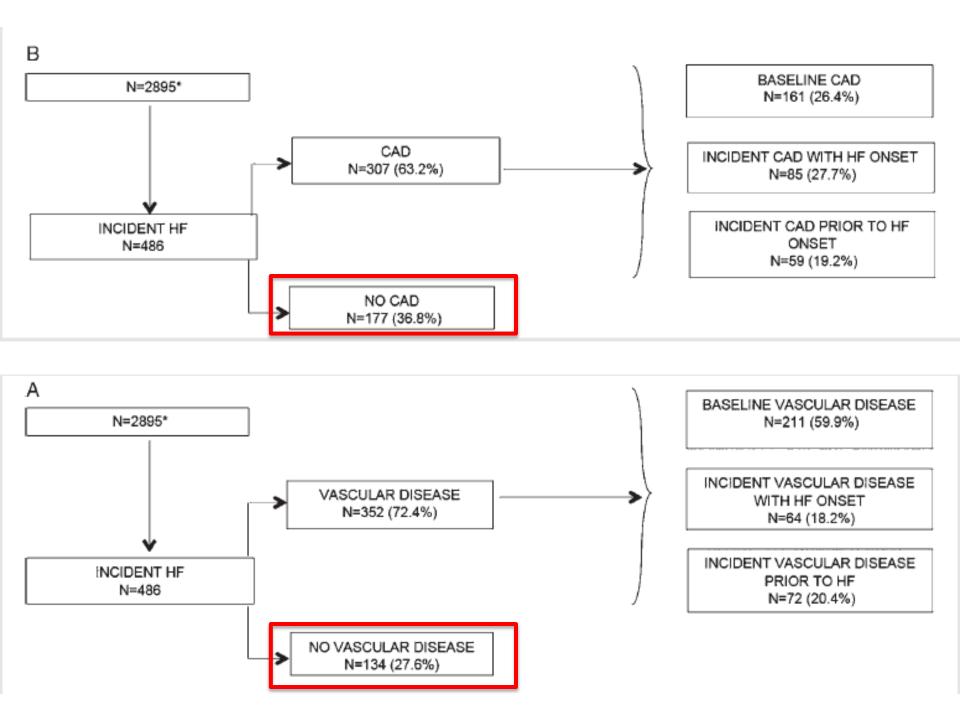
Favors

Empagliflozin

Time to Introduction of Loop Diuretics: Sensitivity Analyses

Cox regression analysis in the treated set.

HR, hazard ratio. CI, confidence interval; HHF, hospitalization for heart failure.


How can HF risk be reduced without reducing coronary events?

European Journal of Heart Failure (2014) 16, 526-534 doi:10.1002/ejhf.69

Incident heart failure in relation to vascular disease: Insights from the Health, Aging, and Body Composition Study

Hassan Khan¹, Andreas P. Kalogeropoulos², Faiez Zannad³, Catherine N. Marti², Peter W. F. Wilson², Vasiliki V. Georgiopoulou², Alka M. Kanaya⁴, Anne B. Newman⁵, Erik Schelbert⁶, Tamara B. Harris⁷, Stephen Kritchevsky⁸, Clyde Yancy⁹, Mihai Gheorghiade¹⁰, Gregg C. Fonarow¹¹, and Javed Butler²*, for the Health ABC Study

Heart Failure Not Phenotyped

Ejection fraction and NP etc. not known

- Does it matter for prevention?
- Hypertension trials
- Do we know subclinical CAD in CAD prevention trials?

What is the mechanism of action?

Curr Cardiovasc Risk Rep (2015) 9:38 DOI 10.1007/s12170-015-0467-0

HEART FAILURE PREVENTION (W TANG, SECTION EDITOR)

SGLT-2 Inhibitors: Potential Novel Strategy to Prevent Congestive Heart Failure in Diabetes?

Frederik H. Verbrugge 1,2,3 · Roman Vangoitsenhoven 4,5 · Wilfried Mullens 2,6 · Bart Van der Schueren 4,5 · Chantal Mathieu 4,5 · W. H. Wilson Tang 1

Diuretic

Volume

Sodium

Glucose

Weight loss

Blood pressure

Insulin sensitivity

Oxidative stress

Metabolism

Renal function

Other unknown MOA

Conclusion

- Importance of HF prevention
 - Recognized but understudied
- Despite high risk for developing HF and subsequent adverse outcomes in patients with DM
 - No targeted interventions recommended to reduce HF
- EMPAREG trial data on HF prevention
 - New option
 - Compelling data
 - Next steps?
 - Data from other SGLT2i forthcoming